Characteristics of the Learning Problem in Situated Interactive
Task Learning
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Abstract

In most learning problems, a single type of task knowledge is learned using a single
specialized learning algorithm that is designed and optimized for that specific type of
knowledge and the environment in which it is learned. In contrast, Interactive Task Learning
(ITL) involves learning all types of task knowledge where such specialization is impossible.
In this chapter, we describe these characteristics of the ITL learning problem that distinguish
it from other learning problems, and how those characteristic influence the underlying
learning algorithms. Throughout our discussion, we use the Rosie agent as an example of an
ITL agent that can learn many tasks in a variety of domains. The distinguishing characteristics
we explore include: learning across different domains, learning diverse task knowledge,
interactivity in learning, the situated aspects of learning, and how an ITL agent can exploit
multiple data sources. We then discuss learning approaches that can be used in ITL and how
they address the unique challenges of ITL.

Keywords: Task learning, task characteristics, interactive learning, situated learning.

Introduction

Learning research in Al and cognitive science usually focuses on a singular learning problem
for a single task where there is a single target type of knowledge to be learned. Much of the
current work in statistical machine learning, for example, can be formulated as a supervised
learning problem where the goal is to learn a classification of a set of prespecified data from
labeled examples. Outside of research on cognitive architecture and reinforcement learning,
learning is rarely coupled to task performance: The learning problem is often studied in
isolation, with a focus on a single learning algorithm, and in a non-interactive fashion, where
the learner has little control over what training it receives.

Our interest is not in learning within a single task, or even a class of tasks, but actually
learning new tasks from scratch through Interactive Task Learning (ITL; Laird et al. 2017).
Mitchel et al. (this volume) define ITL as: “any process by which an agent (A) improves its
performance (P) on some task (T) through experience (E), when E consists of a series of
sensing, effecting, and communication interactions between A, its world, and crucially other
agents in the world.”” ITL stands in stark contrast to approaches that are specialized to a single
task. Not only does it utilize a collection of learning algorithms for a variety of learning
problems, ITL can occur in many different domains, whose very characteristics directly
influence the appropriateness of different learning algorithms. ITL also involves learning the
complete formulation of a task; this entails learning multiple types of knowledge, each of
which can depend on the specific task formulation. As defined above, ITL involves an agent
learning in real-time through inferaction with an instructor. Although there are cases where an
instructor can interactively teach an agent about hypothetical situations, our focus in this
chapter is on cases where the instructor and agent are sifuated in a shared environment.
Because of the flexibility of how an instructor can interact with a learning agent (e.g., a
person can demonstrate or give direct instructions) as well as an agent’s prior knowledge,
multiple sources of knowledge can be available during the learning of a task. Some of these
characteristics can simplify learning while others may complicate it, making the development
of learning algorithms for situated ITL a challenging, but exciting research problem.

Here, we explore the characteristics of situated ITL that distinguish it from other learning
problems and discuss how those characteristics affect the agent’s learning. We consider each
characteristic, independently identifying the impact it has on the ITL problem as defined by
Mitchell (this volume). We then consider these characteristics together and discuss potential
approaches to learning. When appropriate, we provide examples from our own research in
creating an ITL agent named Rosie (Mohan et al. 2012), which is built using the Soar
cognitive architecture (Laird 2012). Before diving into the defining characteristics of situated
ITL, we briefly introduce Rosie.



Rosie: An Interactive Task Learning Agent

Rosie (RObotic Soar Instructable Entity) is a physically embodied agent that learns new tasks
through situated interactive instruction using restricted natural language and limited
demonstration. It can learn over forty simple games and puzzles (such as Tic-Tac-Toe or
Tower of Hanoi), process-oriented tasks (such as cooking or storing), and navigation tasks
(such as delivering or fetching an object). It not only learns various aspects of the tasks (e.g.,
goals, valid actions, failure states, and policies) but also learns new concepts used in the tasks
(e.g., relationships, labels, and functions). Additionally, it learns how to refer to these
components of tasks by associating them with words used to describe them. Whenever Rosie
encounters a new word, it initiates a new interaction to learn the meaning of the word. It can
learn new nouns (names and shapes), adjectives (colors and sizes), prepositions (spatial
relations), comparators (quantities), functions (task-specific value calculations), and verbs
(actions and tasks). After Rosie learns a new word, the human can use it freely in future
instructions (move the green block to the pantry) and the agent can use it when responding to
questions (that is a large green block). Rosie is preprogrammed with only limited initial
domain knowledge: action knowledge for performing its primitive actions (picking up a
block, putting down a block, moving down a hallway), feature-space knowledge of object
attributes (the fact that objects have a color, a size, and a shape), and primitive spatial
relations about the alignment of objects. As Rosie learns, it creates new structures in its long-
term semantic memory that encode the task definition. It interprets this knowledge to perform
that task, leading it to learn efficient procedural knowledge (encoded in rules in Soar).
Following the acquisition of the task, the agent uses its innate problem-solving and planning
capabilities to play the games or perform the tasks by interacting with its world. Depending
on the task, it can also learn policy knowledge to perform the task well. Policy knowledge is
used to select actions in each state and can be learned from the agent’s own experience, from
the specification of a procedure, or from additional advice it receives through instruction
(such as heuristics for a game). The knowledge it learns in one task transfers to shared
concepts, actions, and constraints in new tasks.

Learning Across Different Domains

There is a wide range of domains to which ITL can be applied, including robotics (Mininger
et al. 2018), personal assistants (Azaria et al. 2016), intelligent tutoring authoring (Li et al.
2015), game playing (Hinrich and Forbus 2013), constructive agents and virtual humans (Pew
and Mavor 1998; Zacharias et al. 2008), and cognitive science research. These domains vary
wildly in complexity and characteristics, and these characteristics can significantly impact
what needs to be learned as well as the difficulty of the learning problem. This, in turn,
informs the appropriateness of different learning algorithms. Some of these characteristics
include whether the environment is partially or fully observable; whether the environment is
discrete or continuous; whether actions are deterministic or stochastic; whether the
environment has complex dynamics; and the extent of uncertainty in sensing and acting in the
environment. In general, the more complex and uncertain a domain is, the more difficult it is
for an agent to learn new tasks quickly. Current ITL agents usually focus on tasks within a
single domain, and designers tailor their learning algorithms to that domain. Whether there are
fundamental representations and learning algorithms that will work across all domains
remains an open research question, as is the degree to which certain domains require
specialized learning approaches. Below we provide examples of two different domains and
how their characteristics affect the learning problem.

Virtual Personal Assistants

In the virtual personal assistant domain, an agent performs various tasks that aid in a person's
daily activities, such as answering questions, managing a schedule, or handling messages. In



these tasks, the agent's actions usually involve interacting with people and software interfaces.
There is low uncertainty in its perceptions and actions, and often a discrete, symbolic
representation can be used effectively. This can make the learning problem easier and allow
more aggressive and data-poor learning mechanisms to be used. The agent can learn in large
steps and extract higher quality information from each example. An example of such an agent
1s PLOW (Allen et al. 2007), which operates in a web browser and can learn how to answer
new types of questions through interaction. PLOW leverages the low uncertainty and direct
access to the browser's state to learn new tasks through a single training example, by mapping
the linguistic instructions onto the procedural trace of actions performed in the browser. A
second example is the LIA system (Azaria et al. 2016), which learns new action sequences for
apps on mobile devices using restricted natural language.

Real-World Robotic Domains

A major focus of ITL is in the highly complex domain of real-world robotics. Such
environments are often partially observable, involve high-dimensional and continuous data,
and contain high uncertainty in both perception and action. It is difficult for an agent to build
an accurate and precise model of its environment as well as to predict the results of its own
actions. As a result, high levels of uncertainty can force an agent to be conservative in its
reasoning and its learning, requiring many examples before any conclusions can be drawn. An
incremental approach may be required whereby the agent learns simpler/smaller aspects of the
task before learning more complex structures. Unlike the virtual assistant domain, the agent
may need to learn not just what an action does when it succeeds, but also contingency plans if
an action fails.

In our ITL agent, Rosie, we use the same symbolic state representation formalism across
three different robotic embodiments, which lets us use the same learning algorithms.
However, this requires perception and action systems that are sufficiently accurate and
precise, so that Rosie does not explicitly need to represent or reason about perceptual or motor
uncertainty. In addition, we constrain the environment and the actions so that Rosie has a
relatively stable view of the world and can use its memory to pursue tasks effectively. An
underlying hypothesis is that these characteristics will be true for other domains in which
Rosie will learn new tasks. An interesting question is whether other constraints that arise from
the characteristics of ITL, such as the need to learn very quickly, will force ITL systems to
make similar assumptions about their perceptual and motor systems, as well as the stability of
their environments.

For partially observable domains, the agent must use, and possibly learn, strategies for
maintaining internal representations of the environment and gathering information. As an
example, Rosie can learn some simple strategies for finding objects in the mobile robot
domain, such as representing where a type of object is stored and then going there to look for
one (Mininger and Laird 2016). Agents in a real-world robotic domain might also need to
know, and possibly learn, how to handle complex physical dynamics, in contrast to the above
virtual assistants.

Learning new robotic tasks that can generalize to novel situations in a few interactive
examples is a difficult problem. Often the environment is constrained to make this feasible.
For example, in the task learning mobile robot by Merigli et al. (2014), constraining actions to
driving and speech and using visual fiducials to recognize landmarks enabled the agents to
learn procedural task specifications in a single example. Further, in work by Chao et al.
(2011), agents learn concepts in task goals (such as object labels and spatial relations) from
low-level sensor data. This informs Chao et al.’s choice of using unsupervised learning
methods and Bayesian inference and does require more examples (but still not hundreds or
thousands).



Learning Diverse Task Knowledge

An important feature of ITL is that it does not involve learning just one type of knowledge for
which a single learning algorithm can be deployed and optimized. Tasks can be formulated in
different ways, and the choice of task formulation impacts which types of knowledge need to
be learned. Thus, an ITL agent must be capable of learning diverse types of knowledge.
Below we distinguish between three different formulations of tasks: problem-space,
procedure, and optimization (although a given task can include aspects of any of these) and
the types of knowledge each require. This analysis is independent of the underlying
knowledge representations, such as production rules, neural networks, semantic networks, or
partially observable Markov decision processes. Instead, our analysis focuses on the types of
knowledge required to learn a task, independent of how it is represented.

Knowledge Diversity in Problem-Space Formulations

To determine what knowledge needs to be learned for a task, we start with Newell’s Problem
Space Hypothesis (Newell 1991), which states: “The fundamental organizational unit of all
human goal-oriented symbolic activity is the problem space.” Newel provides informal
definitions of problem space and problem:

Problem Space: A problem space consists of a set of symbolic structures (the
states of the space) and a set of operators over the space. Each operator takes a
state as input and produces a state as output, although there may be other inputs
and outputs as well. The operators may be partial, i.e., not defined for all states.
Sequences of operators define paths that thread their way through sequences of
states.

Problem: A problem in a problem space consists of a set of initial states, a set of
goal states, and a set of path constraints. The problem is to find a path through the
space that starts at any initial state, passes only along paths that satisfy the path
constraints, and ends at any goal state.

The strength of problem spaces is in formulating tasks where an agent learns a goal and
must search through the space of states to achieve it. Classic examples from Al are many
types of reasoning tasks, as well as assembly tasks, puzzles, and games. For these tasks, the
problem space formulation provides us with a starting point to discuss the types of knowledge
that should be learned by an ITL agent: descriptions of initial states, goal states to be
achieved, illegal states, constraints on sequences of operators, and operators that transform
states. The assumption is that once the agent acquires this “first principle” knowledge, it can
attempt a problem by searching for a solution (either internally or externally) through
selecting and applying operators until it achieves the goal. Rather than describing a specific
procedure or generalized policy, the teacher communicates the component task concepts. One
of the strengths of the problem space formulation is that once an ITL agent has learned the
problem space, it knows enough to attempt and possibly solve any problem (as defined by an
initial state and a set of goal states) in that problem space. This formulation is especially
useful when the instructor does not know how to solve the task, or when it is difficult or time
consuming to communicate the solution.

Although there are many different concepts that define a task, most of them involve state
descriptions that are associated with some aspect of the formulation of task, such as goal
completion or operator preconditions. These state descriptions usually involve conjunctions of
conditions over objects and values in the world, such as unary features of objects or relations
between objects. Depending on the domains and tasks, these features can be combinations of
continuous and discrete values. Within Al and cognitive science, there are many different
ways to represent this type of information and there are many different learning methods for



learning these representations, although tasks often require rich representations beyond simple
feature matching. For example, for Rosie, the breadth of games and puzzles it currently learns
(over 30 including games such as Othello and Missionaries & Cannibals) requires concepts
that include conjunctions of unary features (red, large, square), numeric functions (number
of, sum), comparators (less than, more than), words, numbers, and spatial relations (/eft of,
below, linear) (Kirk and Laird 2016). In terms of learning algorithms, constraints (and
assumptions) that arise from different characteristics of ITL usually limit them to be online,
incremental approaches to concept learning. Statistical techniques that require large numbers
of examples can be useful for learning perceptual classifiers, such as for colors and shapes,
which the agent would learn before task learning is attempted.

In addition to learning associations between state descriptions and goals, failure states,
and operators, task learning can also involve learning hierarchical goal structures, where the
operator at one level becomes a new task to solve at a lower level. Lower-level tasks can be
any of the types of tasks described in this section: performing a new action or even simpler
types of tasks, such as classification or categorization. For example, in learning an assembly
task, Rosie may be instructed using a new verb, such as in “Store the box in the pantry.” This
will lead to an interaction in which Rosie learns the “store” task (Mohan and Laird 2014). In
terms of learning new classifications, Rosie might not know the word “red” when instructed
with “Pick up the red block.” In this case, Rosie will engage the instructor to show it
examples of red objects, ultimately learning a classifier in the color spectrum that Rosie can
use to identify red objects.

Another type of knowledge that can be valuable for a problem space task is heuristic or
policy knowledge. This type of knowledge does not define the task, but can be critical for
helping the agent solve the task.

Knowledge Diversity in Procedure Formulations

Although the problem-space formulation works well for many tasks, in many others it is more
efficient for the agent to formulate the task as learning a procedure. For this, however, the
agent might not have an explicit description of the goal nor be capable of achieving the goal
on its own without the specified procedure.

Cooking is a good example of tasks where procedure formulations are used. Consider
trying to bake a key-lime four-layer cake. Few of us are able to search through the “baking”
problem space and determine all of the steps required to make such a cake, in part because we
don’t have an operational definition of what the final cake should actually be. Furthermore,
the branching factor for baking is immense, and most of us do not have good models for what
many of the baking actions actually do at a chemical level. However, most of us can follow a
recipe and learn to bake a specific type of cake (or at least learn to follow the recipe on the
back of a box). For these types of tasks, the agent might not need to learn detailed
descriptions of goals or failure states, because it can assume that the goal is achieved if the
correct procedure is performed. Furthermore, the agent might already know the actions that
must be performed: how to break eggs, mix them with a specified amount sugar, etc.
However, the agent doesn’t know when to do each action or which ingredients to use. Instead,
the agent is learning a task that is associated with a particular sequence of actions that needs
to be performed to accomplish the task. Thus, in a procedure formulation, instead of having to
learn descriptions of goals and failure states, the agent needs to learn a procedure. The exact
form of that procedure can vary. It can be a linear set of instructions, as in a recipe. It can also
be similar to a program, with conditionals, while loops, etc. Alternatively, it can be the value
function for a policy, which consists of mappings from states to actions. Those mappings can
be probabilistic functions, as is learned in reinforcement learning, or deterministic, as in
finite-state machines and rule-based systems.

Tasks formulated as procedures often require learning how to perform complex actions
that are specified in the procedure, such as “fold together beaten egg whites with sugar.”



Learning such complex actions can be formulated as either a problem space or procedure, so
that sometimes a goal and appropriate actions may be specified, or sometimes another
procedure. Furthermore, a given task may involve knowledge from both formulations, where
the instructor provides the goal and actions, as well as helps the agent find the solution by
giving hints and directions while the agent is attempting to perform the task.

One disadvantage of using a procedure formulation that does not include a problem space
formulation is that the agent is bound to the procedure. If there are even small variations to
the original task, it can be problematic for the agent to apply the learned procedure, and it can
be difficult to recover from interruptions or mistakes because the agent does not know why it
is performing each action nor whether alternative actions will still achieve the goal.

Knowledge Diversity in Optimization Formulations

The final task formulation type we consider is where the goal is to maximize or minimize
some quantity. The Traveling Salesman Problem (TSP) is a classic example, where the goal is
to minimize the total distance traveled while visiting every city (node) in a map (graph). In
this example, there is both a goal (visit every city) and a value to be optimized (the total
distance traveled). Optimization problems can include all knowledge of the problem-space
formulation, but add the optimization function, which can be specified as a function over the
state or, as in TSP, as a function over the path.

Although formulating the TSP and similar tasks as optimization problems might seem like
the obvious thing to do, there can be a difficulty. If the agent takes the optimization
formulation “seriously,” then finding an exact solution to the TSP is NP-hard. That might be
necessary in some situations, but in practice, approximations are sufficient, and often the
optimization function is used as an evaluation function to guide a greedy search for a solution.
This leads to a situation where the task is formulated as a problem space, but with additional
knowledge that must be used to guide the search.

Learning is Interactive

With interactive learning, the human instructor provides information, piece by piece, as the
agent needs it. This learning paradigm distributes the onus of learning to both the learner and
the instructor. The learner agent can request the information it needs to perform a task as well
as clarification and disambiguation of previous instructions. The human instructor can
monitor the agent, interrupt it to provide instruction when it seems warranted, and verify the
status of agent learning. Thus, with interactive learning, relevant information is not provided
as a massive data set or a pile of written documents that the agent must process without help
from an instructor. Instead, in interactive learning, the problem of learning a task is
deconstructed into sub-problems of learning components (e.g., goals, parameters, policies)
that can be learned incrementally. Below we analyze important properties of interactive
instruction and how it affects the learning of complex tasks.

Interaction Occurs in Real Time

One of the important advantages of using interaction is that the human instructor can watch
the learner agent interpret and attempt to perform instructions. This provides real-time
feedback to the instructor as to how the agent interprets and executes instructions, and permits
the instructor to adapt the training strategy to the needs of the learner. Thus, it is critical for
learning mechanisms to produce immediate, useable results that the agent can use to attempt
the problem. Furthermore, applying instruction to the problem in real-time facilitates
discovery of other related learning problems for which the agent can request training. To
exploit these advantages, learning mechanisms must incrementally acquire new knowledge
and assimilate it with existing long-term knowledge structures while the agent is behaving. It
further implies that during learning, the agent does not need to reevaluate its previous



experience or knowledge, which are two characteristics of batch learning mechanisms. The
broader point is that the agent cannot require many examples of a concept before doing any
learning. This is not to prohibit corrections or modifications to learned concepts as more data
becomes available, just that some learning must occur immediately. It also implies that the
learning mechanism is computationally fast in producing results that are quickly incorporated
within the agent, so that the agent can use the knowledge immediately. It is hard to quantify
exactly how “fast” the agent needs to be in terms of execution time, except that it cannot take
so long to respond that it annoys the instructor or breaks the flow of the interaction. Rosie
uses online and incremental learning mechanisms that are fast enough so that there is no
visible delay when it is processing instructions, which includes language understanding,
interpretation of internal structures, and compiling of knowledge into high-performance rules.

Available Data Is Sparse and High Quality

Human time is costly, and therefore numerous and repetitive interactions with the agent are
undesirable. Consequently, the agent must learn from small data — a few highly specific
training instances. While the learning data is sparse, it can be assumed that the instructor is
well informed on the task and well intentioned in terms of helping the agent learn, and
therefore generates high-quality, correct/accurate data. These characteristics push toward
learning approaches where the agent must bring to bear its prior experiences and knowledge,
common-sense reasoning, and causal deduction to learn maximally from few instructions.
This is in contrast to alternatives such as non-interactive crowd-sourced learning, where the
quality of instruction can be an issue, so that more conservative approaches to learning are
required.

Rosie employs aggressive generalization mechanisms such as explanation-based learning
(DeJong and Mooney 1986) and version-space induction (Mitchell 1977) to learn procedural
and semantic aspect of tasks. These mechanisms allow Rosie to produce actionable task
representations even from very few examples. Currently, Rosie assumes that every instruction
provided by the instructor is correct. This may not be true in partially observable, noisy
environments or when the instructor is a novice. Ongoing research in our lab is looking at
how learned knowledge can be corrected upon receiving feedback from the environment.

Structure of Instruction Is Flexible

In interactive learning, an instructor can be freed from using a specific ordering to teach the
agent new words and concepts. Often in human-controlled learning (such as supervised
learning), the instructor must attempt to build and maintain an internal model of what the
agent knows and doesn't know to give it good examples. This is especially challenging when
the agent is dynamically learning a variety of concepts (perceptual, spatial, task knowledge in
Rosie) from real-world data. In contrast, with interactive learning, the instructor can rely on
the agent to initiate an interaction when needed. This approach can speed instruction by
eliminating the need for the instructor to carefully structure the interaction or repeatedly check
with the agent to ensure it has completely learned a concept. The agent can actively seek
examples of concepts that are hard to learn and avoid asking for multiple examples of easily
acquired concepts. The instructor can take initiative in presenting interesting examples to the
agent that it might have overlooked, refining the agent's learning.

Rosie implements an interaction model that does not impose a strict order on how it is
taught new concepts. To support this, Rosie uses the content of the instructions to determine
which type of concept is being taught. For example, “If ..., then you win” will lead to a goal
concept being learned. Additionally, it employs a relational, compositional task
representation, which provides flexibility in how the instruction is structured and who takes
the onus of learning. The instructor can choose to control how and when Rosie learns. The
instructor can teach basic concepts before teaching complex concepts that require knowledge
of the basic concepts. However, the instructor may not know or remember the state of Rosie's



knowledge. In situations when the agent is learning complex concepts but lacks required
knowledge of basic concepts, it will take the initiative and guide the interaction to acquire the
relevant basic concepts first. For example, if the concept ‘empty’ is used when teaching
Sudoku but the agent does not yet know it, the agent asks the instructor to define the term so it
can acquire the concept. Then the instructor can say “If a square does not contain a value, then
it is empty”’.

Learning Is Situated

Situated ITL occurs in the environment in which the learner agent is attempting to perform a
task. Any demonstration will occur in that environment, and instructions will often directly
refer to the current situation, although some instruction may refer to past or hypothetical
situations. Here we discuss the ways in which a shared, situated environment impacts both the
instructor and the learner.

Instructor and Agent Share the Same Environment

By having a shared environment, it is much easier for the participants to build up common
ground (Clark 1996), in terms of a shared understanding of the objects, relations, and actions
of the environments, and thus decrease the chance of ambiguity. Both participants can use
deictic references and concrete descriptions as well as nonlinguistic actions, such as pointing.
Within this shared environment, the instructor can focus the agent’s attention on aspects of the
situation that are relevant to the current problem. When difficulties arise, the agent can use
language to describe its knowledge about the situation, its plans, and even reasons for
performing actions that are easy for the instructor to understand and evaluate, thus avoiding
the necessity of having to “open up” the agent to examine (and try to understand) internal data
structures that may be quite distant from the human’s representation of the task.

If the agent identifies an instruction as ambiguous, it can immediately ask for
clarification. This can make the interaction much easier for both the instructor and agent, and
as in the prior section, this allows the agent to be aggressive in learning. To continually learn
new tasks (that may be composed of previously taught tasks), the agent must expand its
capability to understand references to the goals, actions, objects, concepts, etc. that are
relevant to the task being learned. This growing common ground ensures that the instructor
and the agent can continue to interact using the newly learned knowledge.

Instruction Can Be Performed Immediately in the Environment

One advantage of situated instruction is that as soon as the agent learns some aspect of a task,
it can attempt it in the world. If there is failure, it can ask questions and request training to
improve its task performance. Conversely, instructions provided by the human instructor are
immediately applicable to the relevant situation. This simplifies instruction generation for the
human instructor as well as the learning problem for the agent. The instructor can focus on
what they are observing and guide the agent to solve the specific instance they both are
situated in without having to reason about how the task can be solved in general. The agent,
on the other hand, does not have to reason about how and when to leverage the instruction. It
can apply the instruction immediately and observe how it affects task performance, which
guides learning.

In addition, when the agent attempts to solve a problem, it does not need internal models
of the effects of all of its actions; it just needs the ability to execute them. Once it knows the
task, it can attempt it by taking action in the world, possibly through exploration. If a
hypothetical problem is given to an agent, it must have such models to internally search for a
solution. When Rosie is learning new tasks while embodied in a mobile robot, it does not
need detailed models of how the robot moves through the world; it can employ abstract



models of moving from location to location. This simplifies the learning problem because
only the goals need to be learned from instruction.

Learning is Multimodal

In many learning problems, the source of available knowledge is structured and singular, such
as a large database of labeled images. However, with interactive task learning, there are many
potential sources of knowledge that arise from the different ways the human can interact with
the learning agent and from the agent’s access to prior knowledge. Possibly the simplest
interaction a teacher can provide is a positive or negative reward as an evaluation of the
agent’s moment-to-moment task performance. Below we describe additional modalities for
learning in ITL.

Language Can Be Used to Instruct Task Knowledge

When language is available, the human can explicitly define and describe different aspects of
a task (goals, actions, task-specific concepts, and heuristics) through natural language
(Crangle and Suppes 1994). Language can also be used for drawing attention to important
aspects of the task as well as to label important collections (and parts) of objects and actions.
The human can also lead the agent through the task by providing step-by-step instructions.
Language also makes it possible for the human to answer questions posed by the agent. At the
extreme, unrestricted natural language provides a rich, robust vehicle. However, its use is
currently beyond existing state-of-the-art methods. Thus, various forms of restricted
languages are popular, which usually limit vocabulary, syntactic structures, and semantic
content. From a learning perspective, language can provide direct definitions of many of the
components of a task, so that the agent is essentially compiling natural language into internal
structures that it can later interpret to direct its behavior. This is the approach that Rosie and
other agents have taken (Hinrich and Forbus 2013). Important challenges are achieving
generality and robustness in language understanding and “compiling” the knowledge into an
efficient executable representation in real time.

Demonstration and Imitation Can Provide Examples of Task Performance

In combination with language, an instructor can use pointing and gestures to communicate
important objects or actions. Without language, the human can demonstrate appropriate task
behavior (Argall et al. 2009), which can vary from directly controlling a robot via
teleoperation to manually moving joints or having the human perform the desired behavior.
For tasks that are intimately tied to motor actions, this directly defines both the task and how
it is performed. In some cases, the demonstrations can be taken to be instances of appropriate
behavior in the task, which can then be analyzed to determine task definitions.
Demonstrations can also include the instructor manipulating the environment to create
important states, such as the goal of a task, but where the manipulations themselves are not
important. For example, a demonstration could involve creating a stack of disks for the final
state in Tower of Hanoi (Kirk et al. 2016). Each of these creates different challenges and
opportunities for learning. For direct robot control, the challenge is often how to generalize or
transfer specific movements with specific objects to new tasks, where exact movements are
insufficient to solve the problem.

For some demonstrations, the agent is not trying to learn motor commands but rather the
abstract aspects of the task, such as learning the rules of Tic-Tac-Toe. In these cases, the agent
needs to use these instances of behavior as positive examples of appropriate behavior. Just
seeing positive examples, however, can make it difficult for an agent to learn illegal actions
and failure states. More generally, this type of learning is usually not interactive because the
number of examples is often very large, and it is tedious for the human to show many
examples. A second problem with learning from demonstrations without language is that it is



difficult for the agent to derive accurate meaning from the visualized examples. Often,
demonstrations are tightly scripted and the human is led through a series of situations.

Combinations of Language and Demonstration are Possible

By combining language and physical interaction, it may be possible to get the best of both.
Some physical actions or situations are difficult to describe with language, whereas with pure
physical interaction it is difficult to determine which aspects (objects, relations, and features)
of the current situation are relevant. Language can be used to identify which aspects of a task
are being taught, define new words and concepts, and identify which objects, properties, and
relations are most important during a demonstration.

Prior Knowledge Acquired from Other Tasks Can Transfer

Over time, an agent will accumulate knowledge about many different tasks, with knowledge
learned in one task being relevant to future tasks. During learning, the agent needs to be able
to take advantage of prior knowledge to simplify and accelerate learning. Similarly, the
human instructor must have the means to recognize that the agent already possesses certain
knowledge, so that it does not need to be taught. The direct effect of this on learning is that a
learning agent must be able to use what it has learned in one context when it is learning in
another context. All knowledge learned in one task cannot be sequestered solely to that task;
however, some concepts are task specific, so the agent must have some way of learning when
a concept does not transfer, such as through additional instruction.

During the instruction of Rosie, much of the knowledge is encoded in the new concepts it
learns, such as “three in a row” for Tic-Tac-Toe, Three Men’s Morris, and Connect-3. Newly
acquired lexical items, together with their meaning, directly transfer to new tasks. This
represents both an opportunity and a challenge, as some knowledge can transfer to new
situations whereas other learned concepts (and lexical items), acquired for a specific task,
might not be transferable. Rosie does not have any special “transfer” reasoning except when a
term is used that it cannot instantiate in the current situation. In this case, it will attempt to use
a different meaning or learn a new definition.

Summary of ITL Characteristics

In Table 1, we summarize many of the defining characteristics of interactive task learning and
provide examples of those characteristics in the agent Rosie.

Table 1 Summary of ITL characteristics, as exemplified by the agent Rosie.

ITL Characteristics Rosie’s Capabilities

Learning across different domains | Games, puzzles, and simple cooking tasks for a
tabletop robot. Navigation and delivery tasks for a
mobile robot.

Learning diverse task knowledge

Perceptual categories Elaboration rules that extract features from
perceptions.
Task formulation knowledge Initial states, goal states, illegal states, constraints

on operators, operator preconditions, operator
selection knowledge including ordering, heuristics,
policy knowledge, and hierarchical task structure.

Lexical items Parts of speech, word definitions, relation to
concept definitions.
Concept definitions Conjunctions of unary features, relations, numeric

functions, comparators, and numbers




Learning is interactive

Real-time interactions Integrates interaction with task performance and
learning in real time.

Sparse, high-quality data Learns from sentence-by-sentence interactions and
relies on aggressive generalization.

Flexible instruction structure Mixed initiative interaction and concepts defined

before or after they are referenced.

Learning is situated

Shared environment Instructor and Rosie are situated in the same
environment. Instructor uses deictic reference,
pointing, and demonstrations.

Immediate environmental Rosie applies instructions as they are provided,
feedback which the instructor can view and provide
immediate feedback.

Learning is multimodal

Reward Learns control knowledge from reward signal

Language Learns task knowledge from natural language
descriptions.

Demonstration Learns goal descriptions from demonstration.

Mixed Language is used to identify important relations in
demonstrations.

Prior knowledge Transfers knowledge from previously taught tasks.

Learning Approaches for ITL

In this section, we summarize the major constraints and challenges associated with ITL and
describe some of the possible variants of how an agent interactively learns a task with an
instructor.

When considering various approaches to learning tasks through human interaction in a
situated environment, there are fundamental characteristics inherent to the ITL problem that
influence and constrain the learning approaches used. Learning multiple aspects of a task and
different task formulations require an approach that can acquire different types of knowledge,
possibly using very different techniques. Learning from interaction, where sparse examples
are provided in real time, constrains the approaches to avoid reliance on huge data sets.
Instead, the agent must be able to start learning something useful from the very first teaching
example and incrementally build on that learned knowledge. Fortunately, information
communicated through interaction is often high quality, highly relevant, and tied to a shared
context. Learning through interaction requires the learning approach of the agent to be
flexible to instructional variations as well as capable of taking advantage of the corrections,
clarifications, and missing knowledge provided by the human instructor. Characteristics of the
domain—such as its dynamics, the level of uncertainty in sensing and acting, and
observability—will also affect the approach used. More than anything, we conclude that no
one learning algorithm is going to be sufficient for all ITL systems. In fact, learning different
types of task knowledge, from multiple sources of available knowledge and multiple forms of
interaction, will almost certainly require using multiple learning algorithms in the same
system.

Below we delineate different types of task information that can be provided to the agent
from an instructor using the different modalities described earlier. We also consider various
learning approaches that can learn from each kind of information, although not all meet each
of the constraints we have described (such as being online, real time, with few interactions).



Learning from Reinforcement

The simplest type of information is a reward signal, where the teacher provides negative and
positive feedback in response to the agent’s actions, in order to guide the agent towards the
goal. This is usually most appropriate for control tasks, where the agent is attempting to learn
a value function using reinforcement learning. An early example was in the commercial
computer game “Black and White,” where a player would attempt to train a character by
giving it positive or negative reward as it performed actions in its simulated world. This ended
up being tricky because the player had to wait for the character to do a relevant behavior, and
then immediately provide the reward. If the reward was a bit late the character would think
the reward applied to a different action than the instructor intended. Another example is an
agent that was interactively trained in a computer game called Sophie’s Kitchen (Thomaz and
Breazeal 2008). Although interactive, online, and incremental, it was restricted to a single
task, or set of tasks that shared the same reward function. The advantage of instructing
through reward is that it is simple for a person to learn what they need to do. However, it is
limited in the types of knowledge it can teach, it may require the instructor to carefully
monitor the agent’s behavior for an extended period, and it usually only works for learning
behaviors for a single task.

Learning from Execution Examples

Another type of information the agent can learn from is an example execution of the task,
which can take many forms, including an observation of the instructor performing the task, a
physical demonstration of the task through teleoperation or physical manipulation of the
agent, or natural language instructions that lead the agent through the task. In the first case,
the agent observes the instructor performing the task, recognizes the actions taken, and maps
them onto its own capabilities. Alternatively, the execution can take the form of a physical
demonstration, either through teleoperation or physical manipulation. This is a difficult
learning problem, as the agent is learning from the high-dimensional and noisy space of joint
angles and motor movements. Again, the agent can just record the trace and play back the
same motor commands, but this is not robust to variations in the initial state. Another
approach is to learn special key frames, which can either be learned or given by the instructor,
which can generalize better. Finally, the instructor can verbally lead the agent through a task,
step by step, with individual commands.

The agent can employ many different learning mechanisms to learn from this information.
The simplest is to memorize the instructions and replay them when given the same task in the
same initial state. It is a simple learning approach, but without further generalization
capabilities, the agent is restricted to procedure tasks that can be repeated exactly, over and
over. To increase generality, the agent can use a few different techniques. One is to use inverse
reinforcement learning (Abbell and Ng 2004) to induce a reward function that is consistent
with multiple step-by-step actions. Inverse RL usually requires many examples, so is not
necessarily appropriate given the interactive aspect of ITL, and it is usually restricted to a set
of tasks that can be described by a single reward function. The agent can also attempt to
generalize its experience by learning a description of the goal through comparing the final
state to the initial state, and possibly asking the instructor which aspects of the goal are
definitional. This allows the agent to formulate future instances of problems that share the
same (or similar) goals, but with different initial states.

Once the agent has derived a description of the goal, the agent can use its knowledge about
the causal structure of its actions to learn a general policy using Explanation-Based Learning
(EBL; DeJong and Mooney 1986). This is the approach Rosie uses when it is learning from a
sequence of actions, such as “Open the pantry. Move the plate into the pantry. Close the
pantry. You are done.” It first derives and learns a description of the goal (possibly from
further interaction with the instructor), and then performs a retrospective analysis of the
solution that is used to learn general policy knowledge through Soar’s procedural learning



| mechanism.- In Rosie, this approach is also used when the agent solves a problem-space
formulation of a task, where only the goal is specified, such as, “The goal is the plate is in the
pantry and the pantry is closed” (Mohan and Laird 2014).

Learning from Procedure Specification

An instructor can also provide a more general specification of desired behavior by providing
an explicit description of the procedure the agent should follow, such as with the recipe
example described earlier. From such a specification, the learner can attempt to learn a
procedure which represents the actions needed to perform the task and their ordering. One
example of this is the Instruction Graph (Mericli et al. 2014), which is a directed graph that
represents the flow of execution for the task and can include looping and conditional
structures. An alternative is where the instructor provides an explicit procedure, such as “do y
until condition x is met, then...” (Langley et al. 2010; Salvucci 2013), which is essentially a
high-level programming language that the agent must dynamically compile into a procedure
to execute in the future.

Learning from Task Concept Specifications

‘ The final form of information the agent can learn from is the explicit specification of high-
level task concepts. For example, the instructor could directly communicate a problem-space
formulation of the task, providing descriptions of goal and failure states, specifications of
legal and illegal actions, and definitions of newly introduced concepts. These instructions can
be via natural language or demonstration (Huffman and Laird 1995; Hinrich and Forbus
2013). This is the method Rosie uses to learn new games and puzzles, by leading the
instructor through each aspect of the problem space, asking for definitions, and then
interpreting them in the shared context, and operationalizing them for future use (Kirk and
Laird 2016).

A variant for teaching policy information is where the instructor, instead of providing a
complete procedure or specific steps, provides heuristic advice to guide the agent’s behavior
(McCarthy 1958). The advice is usually more general and informative than is possible with a
simple reward, such as that an action is “good” or “bad,” and can include descriptions of the
situation in which an action applies. In a problem-space formulation, advice can be used so
that the agent not only learns how to perform the task, but also can both solve a problem
quickly and learn to perform it well. For example, in Othello, Rosie can learn specific
heuristics such as “Prefer moving a block onto a corner location over an edge location.”

Another approach is to engage the instructor in an interaction to learn more general
concepts that allow it to generalize its task concepts. When Rosie is presented with a
demonstration of a goal state in its environment (e.g., a stack of disks for Tower of Hanoi), it
engages in an interaction with the instructor to determine which features and relations can be
ignored, and which are necessary for defining a goal state (Kirk et al. 2016). Finally, Rosie
also allows the instructor to describe general hypothetical situations, so that it is not bound to
specific instances.

\ Conclusion

In this paper we have reviewed the learning problem for ITL. What makes it both challenging
and exciting is that it is not a single problem, where there is one type of knowledge to be

learned, through one type of interaction. Nor is there a single algorithm that is applicable to
all aspects of ITL. Instead. tin—eeneliston;—the learning problem for ITL is a very broad
constellation of problems, defined by beeatse—et-the-diverseity—of types of interaction and




instruction, the-diversitydiverse-ofthe domains and available knowledge, and-the-diversity-ine
types of knowledge to be learned. and diverse approaches for learning that knowledge.
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